Posted on

cannabinoids and inflammation

Cannabis use was not statistically associated with hs-CRP, IL-6 and fibrinogen.

We investigated associations of cannabis use and peripheral inflammation in adults.


To examine the relationship between self-reported cannabis use and high-sensitivity C-reactive protein (hsCRP), Interleukin 6 (IL-6) and fibrinogen.

Self-reported cannabis use, particularly cannabis use within the past 30 days, was associated with lower levels of each biomarker of systemic inflammation, although findings were imprecise. Specifically, in multivariable models, the associations between respondents who self-reported cannabis use in the past 30 days compared to never use was imprecise for hs-CRP (β ​= ​−0.15, 95% confidence interval (CI): −0.32, 0.00), IL-6 (β ​= ​− 0.02, 95% CI: −0.10, 0.05) and fibrinogen (β ​= ​− 0.01, 95% CI: −0.04, 0.02). We did not find that these associations differed significantly by sex.

Cannabis is among the most frequently used substance in United States (U.S.). Studies evaluating the association between cannabis use and inflammation in humans have been few and have not explored potential sex-dependent effects.

Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs). As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis. A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ 9 -tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented. Mention is also made of the noncannabinoid plant components and pyrolysis products, followed by a discussion of 3 synthetic preparations-Cesamet (nabilone; Meda Pharmaceuticals, Somerset, NJ, USA), Marinol (dronabinol; THC; AbbVie, Inc., North Chicago, IL, USA), and Sativex (Cannabis extract; GW Pharmaceuticals, Cambridge United Kingdom)-that have anti-inflammatory effects. A fourth synthetic cannabinoid, ajulemic acid (AJA; CT-3; Resunab; Corbus Pharmaceuticals, Norwood, MA, USA), is discussed in greater detail because it represents the most recent advance in this area and is currently undergoing 3 phase 2 clinical trials by Corbus Pharmaceuticals. The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed. The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances. Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents. Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.-Zurier, R. B., Burstein, S. H. Cannabinoids, inflammation, and fibrosis.

Keywords: anti-inflammatory; antifibrotic; endocannabinoids; specialized proresolving mediators.

29. Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol (2020) 16(1):9–29. doi: 10.1038/s41582-019-0284-z

136. Guo C, Fu R, Wang S, Huang Y, Li X, Zhou M, et al. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin Exp Immunol (2018) 194(2):231–43. doi: 10.1111/cei.13167


190. Yang L, Li FF, Han YC, Jia B, Ding Y. Cannabinoid receptor CB2 is involved in tetrahydrocannabinol-induced anti-inflammation against lipopolysaccharide in MG-63 cells. Mediators Inflamm (2015) 2015:362126. doi: 10.1155/2015/362126

162. Sharma N, Jha S. NLR-regulated pathways in cancer: opportunities and obstacles for therapeutic interventions. Cell Mol Life Sci (2016) 73(9):1741–64. doi: 10.1007/s00018-015-2123-8

6. Gray EE, Winship D, Snyder JM, Child SJ, Geballe AP, Stetson DB. The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA. Immunity (2016) 45(2):255–66. doi: 10.1016/j.immuni.2016.06.015